
An Introduction to Shell Scripting

Anja Gerbes

Goethe University, Frankfurt am Main
Center for Scientific Computing

August 28, 2018

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Assumptions

Before starting, you should. . .

. . . know how to use a text editiors like emacs or vi/vim

. . . have basic knowledge of UNIX:
I some basic commands like ls, cd, . . .
I processes, kernel, etc

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

What is UNIX shell?

kernel

system calls

applications

shell

library routines

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Welcome to a new world!

sh Bourne-Shell

csh C-Shell

ksh Korn-Shell

bash Bourne-Again-Shell

We will restrict ourselves to bash
To find all available shells in your system type following command:
$ cat /etc/shells

Note!
Each shell does more or less the same, with differences in command
syntax, or built-in functions, . . .

To find your current shell type the following command:
$ echo $SHELL

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Why shell scripting?

I Need to manage computers remotely?

I Need to perform complex operations on lots of files?

I Need to repeat the same operations on a lot of machines?

Shell scripting is the answer!!!

. . . or maybe not, BUT
Shell scripting glues together

I the power of UNIX and

I the power of programming

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Why shell scripting?

I Need to manage computers remotely?

I Need to perform complex operations on lots of files?

I Need to repeat the same operations on a lot of machines?

Shell scripting is the answer!!!

. . . or maybe not, BUT
Shell scripting glues together

I the power of UNIX and

I the power of programming

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Why shell scripting?

I Need to manage computers remotely?

I Need to perform complex operations on lots of files?

I Need to repeat the same operations on a lot of machines?

Shell scripting is the answer!!!

. . . or maybe not, BUT

Shell scripting glues together

I the power of UNIX and

I the power of programming

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Why shell scripting?

I Need to manage computers remotely?

I Need to perform complex operations on lots of files?

I Need to repeat the same operations on a lot of machines?

Shell scripting is the answer!!!

. . . or maybe not, BUT
Shell scripting glues together

I the power of UNIX and

I the power of programming

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

What is a shell script?

I A Text File

I With Instructions

I Executable, if wanted

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Writing Bash Scripts

I Shebang
#!/bin/bash

I Comments
#This text will be ignored

I Make script executable
chmod +x myscript.sh

I Execute Script
./myscript.sh

I Also (no need to turn on x bit)
bash myscript.sh

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

A simple example of shell script with arguments

#!/bin/bash

#This is a comment
echo "Hello, $1 $2"
echo "Greetings from $0"
echo "Welcome back!"

$ bash simple.sh
Hello,
Greetings from simple.sh
Welcome back!

$ bash simple.sh Hans
Hello, Hans
Greetings from simple.sh
Welcome back!

$ bash simple.sh Max Born
Hello, Max Born
Greetings from simple.sh
Welcome back!

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Command Line and Exit Status

I The command line is the interface from the shell to an external
command (executable).

I The exit value is the interface from the command to the shell.

$ ls aAa
ls: cannot access aAa: No such file or directory
$ echo $?
2

But

$ touch aAa
$ ls aAa
aAa
$ echo $?
0

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Get Input

#!/bin/bash

echo "What is your name?"
read uname

echo "Welcome $uname"

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Special Files

Possible startup files
I /etc/profile is executed automatically at login
I The first file found in the list

I ~/.bash_profile,
I ~/.bash_login, or
I ~/.profile

is executed automatically at login

I ~/.bashrc is executed by login and nonlogin shells.

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Filename Metacharacters

* match any string of zero or more characters
? match any single character
[abc...] match any of the enclosed chars; hypens for ranges ([a-z])
[!abc...] match any chars not enclosed
~ home directory of current user
~name home directory of name
~+ current working dir
~- previous working dir

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Quoting

Tricky issue: see man bash, under QUOTING

Double quotes: "

Everything between the initial " and the closing " is taken literally, except
for

$ variable substitution will occur

‘ command substitution will occur

\ it will escape the next character (can also escape ")

Single quotes: ’

Everything between the initial ’ and the closing ’ is taken literally

I another ’ cannot be embed a single quoted strings

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Quoting

‘ or $()

Command substitution: expands to what is inside

Examples of quoting

$ echo ’Single quotes "protect" double quotes’
Single quotes "protect" double quotes

$ echo "Well, isn’t that \"special\"?"
Well, isn’t that "special"?

$ echo "You have ‘ls | wc -l‘ files in ‘pwd‘"
You have 84 files in /home/gerbes

$ x=100
$ echo "The value of \$x is $x"
The value of $x is 100

$ echo ’$a’
$a

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

I/O Redirection

fd Name Abbr. Default
0 standard input stdin Keyboard
1 standard output stdout Screen
2 standard error stderr Screen

Simple redirection

cmd > file sends output to file (overwrite)

cmd > > file sends output to file (append)

cmd < file cmd takes input from file

cmd1 | cmd2 a pipe: output of cmd1 is input of cmd2

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

I/O Redirection

More redirection
cmd < < text here document

cmd >& n sends cmd output to file descriptor n

cmd m>& n Same as previous, but output that would normally go to file
descriptor m is sent to file descriptor n instead

cmd 2>file sends standard error to file, standard output remains the
same (screen)

cmd &> file sends both standard output and standard error to file

cmd &> > file appends both standard output and standard error to file

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

I/O Redirection

OUTPUT ERROR

cat

INPUT
0

1 2

In practice

$ cat # it takes input from keyboard and output goes to screen (also errors)
hello world
hello world
$ cat > my_dummy_file # now std output goes to a file
hello world, again
$ cat < my_dummy_file # input comes from file; no need to press ctrl-d to exit cat
hello world, again

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Pipe

A Pipe!

OUTPUT

ERROR

echo

INPUT
0

1

2

OUTPUT

ERROR

wc

INPUT
0

1

2

How does it look like in terms of commands?

$ echo "Hello world!" | wc -c
13

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Continuing Lines with \

$ echo This \
is \
a \
very \
long \
command line.

This is a very long command line.

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Variable Assignment

I letters, digits, underscores

I case sensitive

I may not start by a digit

I assignment of variables with the = operator

I no spaces between name and value

I multiple assignments in one line
name=John lastname=Smith age=99

I Convention: uppercase names used/set by the shell

I default: all variables are strings

I declare -i

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Variable Substitution

var=value sets var to value

${var} Use value of var

${var:-value} Use var if set, otherwise, use value

${var:=value} Use var if set, otherwise, use value and assign value to var

${#var} Use the length of var

${!var} Use value of var as name of variable whose value should
be used (indirect reference)

$ a=CC b=DD A=a
$ echo ${!A}
CC

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Some Variables

$HOME absolute path of the home directory

$HOSTNAME name of the computer

$PATH list of paths where the executables are looked
for

$PWD current working directory

$OLDPWD previous working directory

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Some Special Shell-Variables

$0 first word (command name)

$n individual positional arguments on command line

$*, $@ all arguments on command line

$# number of command line arguments

$$ PID of the active shell

$! PID of last background command

$? Exit value of last executed command

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Variables and the Environment

$ env
[...variables passed to sub-programs...]

$ NEW_VAR="Yes"

$ echo $NEW_VAR
Yes

$ env
[...PATH but not NEW_VAR...]

$ export NEW_VAR
$ environment
[...PATH and NEW_VAR...]

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Arithmetics

I Only Integer Arithmetics

I let command:

let expressions
((expressions))

Examples:

$ let i=0# variables do not need preceeding "$"
$ let i=i+1# spaces not allowed
$ echo $i
1
$ let "i = i + 1" # quotes must be added if expression contains spaces
$ echo $i
2
$ ((i += 1)) # ((...)) does quoting for you
$ ((i *= 7)) # Arithmetic operators taken from the C language
$ echo $i
21

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

$(()) for Math

I $((...)) to assign to a variable the result

$ a=$((1 + 2))
$ echo $a
3

$ echo $((2 * 3))
6

$ echo $((1 / 3))
0

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Several ways to get history

I history command

I line-edit mode

I fc command

I C-shell-style history

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

line-edit mode

I history treated like a file

I lines can be modified before executing

I set -o emacs or set -o vi

emacs result
up or ctrl+p previous command
down or ctrl+n next command
ctrl+r get previous command containing string
ctrl+s get next command containing string

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Control Constructs

I if

I for

I while

How do we write conditions in bash?
The easiest way: use the test command

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Logic test

test condition
[condition]
[[condition]]

I [..] and [[..] must be surrounded by spaces

I [[..]] word splitting and filename expansion disabled

$ test 1 -lt 10
$ echo $?
0

$ test 1 == 10
$ echo $?
1

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

I test

I []

[1 -lt 10]

I [[]]

[["this string" != "this"]]

I (())

((1 < 10))

I [-e filename]

I Much more!
I see: man test

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Decision Control Constructs if Statements

I if allows the programmer to make a decision in the program based
on conditions he specified

I If the condition is met, the program will execute certain lines of code
I otherwise the program will execute other tasks the programmer

specified
I different types of conditional statements: file-based, string-based

and arithmetic-based conditions
I e.g. file-based conditions are unary expressions and often used to

examine a status of a file (-e file returns true is file exists)

see if a file exists

if [-e /etc/passwd]
then
echo "/etc/passwd exists"

else
echo "/etc/passwd not found!"

fi

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Looping Control Constructs

I simplify recursive tasks

I optimize any code by providing a way to minimize code

I easier to troubleshoot than unstructured code providing the same
output

I types of looping statements: the for and while loops

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Looping Control Constructs for Loops

for-in structure

for i in 1 2 3
do
echo $i

done

list directory recursivly

for i in /*
do
echo "Listing $i:"
ls -l $i
read

done

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

C-like Syntax for Loops

syntax of C-style for-loop

for ((initialization; boolean_test; increment/decrement))
do
<code>

done

example for C-style for-loop

LIMIT=10
for ((a=1 ; a<=LIMIT; a++))
do
echo -n "$a"

done

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Looping Control Constructs while Loops

I while separates the initialization, Boolean test and the
increment/decrement statement

syntax of while-loop

<initialization>
while(condition)
do
<code>

<increment/decrement>
done

example for while-loop

a=0; LIMIT=10
while ["$a" -lt "$LIMIT"]
do
echo -n "$a"
a=$((a+1))

done

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Functions

syntax of functions

name () {
function’s body

} [redirections]

example for functions

fatal () {
echo "$0: fatal error:", "$@" > &2
exit 1

}

...

if [$# = 0]
then

fatal not enough arguments
fi

I return to return and exit value to the calling program

I exit to really exit

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Easy exercises

Exercise 1: back me up!

Write a shell script that backs itself up. The backup’s name should be the
original name with a .back suffix.

hint
Use cat

cat "$0" > "$0.back"

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Easy exercises

Exercise 1: back me up!

Write a shell script that backs itself up. The backup’s name should be the
original name with a .back suffix.

hint
Use cat

cat "$0" > "$0.back"

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Easy exercises

Exercise 1: back me up!

Write a shell script that backs itself up. The backup’s name should be the
original name with a .back suffix.

hint
Use cat

cat "$0" > "$0.back"

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Easy exercises

Exercise 2: reverse
Write a script that reverses the content of a given file given as first
argument and writes it to a file appending the .kcab suffix to the original
file name.

hint
Use tac and rev

rev $1| tac > $1.kcab

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Easy exercises

Exercise 2: reverse
Write a script that reverses the content of a given file given as first
argument and writes it to a file appending the .kcab suffix to the original
file name.

hint
Use tac and rev

rev $1| tac > $1.kcab

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Easy exercises

Exercise 2: reverse
Write a script that reverses the content of a given file given as first
argument and writes it to a file appending the .kcab suffix to the original
file name.

hint
Use tac and rev

rev $1| tac > $1.kcab

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Easy exercises

Exercise 3: basic argument parsing

Write a shell script that takes 3 arguments and prints them in reverse
order. If -h is given, print also a help message.

hint

$1, $2, . . .

echo "$3 $2 $1"
if ["$1" = "-h" -o "$2" = "-h" -o "$3" = "-h"]
then
echo "Some help"

fi

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Easy exercises

Exercise 3: basic argument parsing

Write a shell script that takes 3 arguments and prints them in reverse
order. If -h is given, print also a help message.

hint

$1, $2, . . .

echo "$3 $2 $1"
if ["$1" = "-h" -o "$2" = "-h" -o "$3" = "-h"]
then
echo "Some help"

fi

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Easy exercises

Exercise 3: basic argument parsing

Write a shell script that takes 3 arguments and prints them in reverse
order. If -h is given, print also a help message.

hint

$1, $2, . . .

echo "$3 $2 $1"
if ["$1" = "-h" -o "$2" = "-h" -o "$3" = "-h"]
then
echo "Some help"

fi

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Intermediate exercises

Exercise 4: implement a trash

Write a shell script that acts as a safe delete. Call it srm.sh. Filenames
passed as command-line arguments to this script are not deleted, but
instead moved to a directory called ~/TRASH. Add the following features:

I Upon invocation the script checks the ~/TRASH directory for files
older than 7 days and permanently removes them.

I If the files are not gzipped, the script compresses each file before
moving it to the trash.

I decouple the initial check to another script that should be executed
regularly by cron.

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Intermediate exercises

Exercise 5: process monitor

Given a process ID (PID) as an argument, this script will check, at
user-specified intervals, whether the given process is still running. You
may use the ps and sleep commands.

Anja Gerbes An Introduction to Shell Scripting

Invoking the shell Syntax Variables Arithmetics Command history Control constructs Functions Exercises

Write to

I hpc-support@csc.uni-frankfurt.de

I support@csc.uni-frankfurt.de

in case of general questions about the cluster.

Or directly to us for comments or questions about this course:

frankfurt@hpc-hessen.de

THANK YOU!

Anja Gerbes An Introduction to Shell Scripting

	Invoking the shell
	Syntax
	Variables
	Arithmetics
	Command history
	Control constructs
	Functions
	Exercises

